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Abstract. We present a comprehensive theory of lhe elecrrical conductance C of phase-coherent, 
multi-channel. resonant sbllclures in lhe presence of superconductivay. When voltages of the 
order of the level spacing are applied, pmticle-hole symmetry is broken and our results differ 
significantly from earlier descriptions. After deriving generafizations of the well-known Breit- 
Wigner formula, valid in the presence of superconductivity, results for resonant transport in ulree 
classes of sbllchlre are obtained. First. for a superconducting dol (SDOT) connected to n o d  
contacts (N). we examine the change in conductance as the magnitude of L e  superconducting 
order parameter increases from zero. W e  change is typically negative, except near a normal- 
slate resonance. where large positive changes can occur. Secondly, for a struchut comprising 
a normal (N) contacl, a normal dot (NDOT) and a superconducting (S) contact, we predict that 
finite-voltage. differential conductance resonances are strongly suppressed by the switching on 
of superconductivity in the S contact. In the weak-mupling limit, resonances which survive 
have a double-&ed line-shape. Thirdly, analytic results a n  presented for superconductivity- 
enhanced. quasi-particle inrerferometers (SEQUINS). which demonsme lhat resonant SEQUINS 
can provide galvanomeaic magnetic flux detectors, with a sensitivity in excess of the flux 
quantum. 

1. Introduction 

Recent advances in the fabrication of nanoscale structures have led to increasing interest in 
wansport through resonant tunnel junctions and quantum dots [l, 21. In part this is due to 
the new physics associated with Coulomb blockade [3] and in part due to growing interest 
in quantum chaos [47]. The bulk of work in this area has focused on normal structures, 
but more recently attention has turned to hybrid structures involving a superconducting 
component. Recently it has been demonstrated experimentally that the energy gap of a 
superconducting dot is directly observable through Coulomb blockade experiments [8] and 
theoretical work on incoherent transport through such dots has been carried out [9]. In 
this paper, we present a detailed description of the effect of superconductivity on phase- 
coherent transport through resonant structures, in the limit where charging effects can be 
ignored. This limit should be experimentally accessible, because even intimate contact with 
a superconductor will not broaden states below the gap. Many new phenomena involving 
coherent transport through resonant superconducting hybrids are expected to manifest 
themselves in a small number of generic structures. One such example is a 'N-NDOTS' 
structure comprising one or more normal (N) current-carrying leads. in contact with a normal 
zero-dimensional 'dot' (NDOT). which in turn makes contact with a superconducting (S) 
lead. In contrast with the zero-voltage limit, where a general multi-channel description of 
this structure is available [IO], there currently exists only a single one-dimensional study 
of finite-voltage, resonant transport [ 111, in which a &function potential well, with a single 
localized state, is introduced into a one-dimensional insulating barrier. 
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To understand the new physics likely to emerge in such a structure, it is useful to recall 
the known properties of a N-NDOT-N’ system, in which excitations incident from normal 
contacts (N, N’) can resonantly tunnel through the NDOT. In this case the zero-temperature 
electrical conductance is G = (2e2/h)To, where TO is the normal transmission coefficient 
through the device. When contact is made with lead N (N‘), the levels of the NDOT 
are broadened by an amount r (r’) and, ‘on-resonance’, TO is given by the Breit-Wigner 
formula [12, 131 

T~ = 4rr‘/(r + rY. (1.1) 

The statistical properties of these resonant values of G are determined by those of r and 
r‘, which in turn depend on the values of the wavefunctions of the resonant level at the 
contacts. It is here that ideas originating from studies of quantum chaos can be used to 
yield general predictions about statistical properties [4-71. In contrast with equation (1.1). 
the sub-gap, zero-temperature electrical conductance of a N-NDOT-S structure is given by 
the Blonder, ‘Iinkham and Klapwijk (BTK) formula [I41 G = (2eZ/h)2R., where R, is 
the probability that an excitation incident from N will Andreev reflect from the NDOT-S 
composite scatterer. For energies less than the superconducting energy gap Ao, levels are 
broadened only by the N-”DOT contact. For charge Iransporl to occur, an electron from 
the N lead must normally transmit into the NDOT (with probability proportional to r+), 
normally transmit into S (with probability U$-) and Andreev convert into a hole. The 
hole must then enter the dot (with probability U:+) and finally exit into the N lead (with 
probability rt). The resulting analogue of the Breit-Wigner formula for R. is of the form 
[IO1 

R= = 4[r:+~!.+i/[r: + u;-u!.+I*. (1.2) 

For a normal system described by equation (1.1). G is a maximum when 

r = r‘. (1.3) 

For a system described by equation (1.2), G is a maximum when 

(1.4) I ,  r: = u+u-+. 

Hence resonances are predicted [ I O ]  to persist when superconductivity is switched on, 
with a probability comparable with that of the normal state. In section 6 (below), we 
present a detailed analysis of multi-channel resonant transport, which confirms this zero- 
voltage prediction, but which also contains the surprising prediction that resonances in the 
finite-voltage differential conductance are destroyed by superconductivity. Furthermore, in 
contrast with single-peaked resonances predicted in [IO], finite-voltage resonances which 
do survive can have a twin-peaked structure. 

A second class of structures involves two (or more) separate superconductors S and 
S’, with respective order parameter phases 6, q4’. The resonant energies of a N-SS’ or 
N-NDOT-SS’ composite will vary periodically with the phase difference q4 - q4‘ [15- 
221 and one expects novel features to appear, not yet observed in the small number of 
Andreev interference experiments carried out to date [23-261. Depending on the particular 
geometry, quasi-particle interference effects can be significantly enhanced by the presence of 
superconductivity and in section 7, generic properties of such superconductivity-enhanced, 
quasi-particle interferometers (SEQUINS) are highlighted. 
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A third class of generic structures is formed when a normal lead makes contact with a 
superconducting dot (SDOT), which in turn makes contact with a second normal lead. It is 
known [27,28] that when a superconducting island is added to a normal host, the electrical 
conductance can either increase or d e c m e ,  depending on the microscopic configuration of 
host impurities. This prediction has been confirmed experimentally in metallic samples [29, 
301, but the role of resonances remains to be clarified. For a N-SDOT-N’ stmcture, the 
BTK formula [14] for G does not apply and more general current-voltage relations [31-331 
involving normal and Andreev transmission probabilities must be used. In what follows, 
after deriving Breit-Wigner analogues for these quantities, we obtain analytic results for the 
change in conductance due to the switching on of superconductivity in a resonant dot. 

For simplicity, we restrict the following analysis to structures for which well-defined 
dc transport measurements exist and therefore do not discuss Josephson junctions formed 
from S-NDOT-S structures 134-371. In appendix A, a general approach to finite-voltage 
transport through phasecoherent structures is discussed, and in section 2, an analogue of 
the Breit-Wigner formula for arbitrary phasecoherent structures is derived. In section 3, 
these sections are combined to yield general results for resonant transport in the presence 
of Andreev scattering. In sections 4 and 5 ,  analytic results for N-SDOT-N and N-NDOT- 
S structures are presented and in section 6, generic properties of resonant SEQUINS are 
described. Finally in section 7, analytic predictions are compared with the results of exact 
numerical solutions of the Bogoliubov-de Gennes equation in two dimensions. 

2. Analysis of phase-coherent, rrsonant transport 

In this section we derive an expression for the quasi-particle scattering amplitude xn,+,(E, H) 
and transmission coefficient T,, = [ S ~ , ~ , ( E .  H)I2 between two scattering channels n,n‘ of 
an open vector space A ,  in contact with a sub-space B .  These quantities are functions of the 
quasi-particle energy E and the Hamiltonian H of the combined structure and, as discussed 
in appendix A, underpin various conductance formulae derived in subsequent sections. 
The result is very general and makes no assumptions about the presence or otherwise of 
resonances. More precisely, we describe a quantum structure connected to ideal, normal 
leads of constant cross-section, labelled L = 1,2, , . . and therefore begin by considering 
two vector spaces A and B ,  spanned by a set of basis functions. In what follows, the 
sub-space B represents the structure of interest and sub-space A the normal leads, as shown 
in figure 1. The Hamiltonian is H = H A  + H B  + HI, where HI allows transitions between 
the sub-spaces. Since HI can be written 

o w  
“ 1 = ( . t  0 )  

the Green’s function G for the combined space A fB B has the form 

For n # n’, the result, which we derive for normal leads described by a real Hamiltonian, 
is 

Tnn, = 4Trace [ ~ - ( ~ ) G B B ~ ( ~ ’ ) G B B ~ ]  (2 .3~)  
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and for n = n' is 

N R Claughton et a1 

T., = 11 -2iTrace[I'(n)G~~] 1' (2.3b) 

where 

G E E - '  = gB-' -U' - G + i r  (2.4) 

and the trace is over all internal levels of B. In these expressions, r(n)  is a Hermitian 
matrix of inverse lifetimes, r = E, r(n) ,  U and U' are Hermitian self-energy matrices and 
g B  is the retarded Green's function of sub-space B when HI = 0. The above result has 
been cast in a form which resembles the Breit-Wigner formula, but is very general and 
makes no assumptions about the presence or otherwise of resonances. 

Closedporriori of 

Figure 1. A sketch of a closcd sub-space B,  in contact with an 
open sub-space A .  

The form of equations (2.3) and (2.4) highlights the essential difference between open 
and closed channels. In the absence of open channels, U and r are identically zero and 
if the sub-space B is closed, GBB describes a quantum smcture with well-defined energy 
levels, shifted by the self energy G' arising from contact with closed channels. Clearly no 
quasi-particle transport is possible through such a structure. When contact is made with 
open channels, the levels are further shifted by the self-energy matrix U and more crucially 
are broadened by the lifetime matrix r. If the sub-space B is closed, it can be shown that 
equations (2.3) satisfy 

During the past decade, the Breit-Wigner formula 112, 131 has been applied to a variety 
of problems involving resonant transport in normal-state structures, including normal-metal 
rings 1421, quantum Hall structures [43] and, more recently, Fano resonances in quasi-one- 
dimensional wires [44]. For a normal-metallic conductor, under resonant conditions, where 
the level spacing is much greater than the broadening, Biittiker has presented a multi-channel 



Andreev resonances in quantum dots 8761 

derivation of the Breit-Wigner formula through a single resonant level [45]. This limit is 
recovered from equation (2.3) by restricting the trace to a single level. In what follows. we 
shall encounter situations in which, due to particle-hole symmetry, degenerate states can 
simultaneously resonate, and therefore the more general formulae (2.3) is required. 

To derive this result, we recall that when HI = 0, G reduces to the Green's function g 
of the decoupled system, where 

(2.5) 

(2.7) 

GAB = SAWGBB (2.9) 

and 

GBA = GssW'g.4. (2.10) 

These demonstrate that once GBB is known, all other quantities are determined. To 
obtain an expression for transmission coefficients we introduce a set of states {IA)], which 
span the sub-space A ,  and write gA = Eir lA)gi,&(fil. Since part of A consists of a number 
of ideal, straight, normal leads of constant cross-section, described by a real Hamiltonian, it 
is convenient to associate a sub-set of the states {IZ)] with open channels of these leads. For 
these states, we introduce the notation [A) = I n . x ) ,  where n is a discrete label identifying 
the lead. quasi-particletype, hansverse kinetic energy and any other quantum numbers of 
an open channel, and x is a position coordinate parallel to the lead. With this notation, 

(2.11) 

where the prime indicates a sum over states IA),Jriz) orthogonal to open channels. 
If the lead belonging to channel n terminates at x = x ~ ,  then on the surface of the 

lead, the Green's function g.(x, x ' )  takes the form g , ( x L .  X L )  = g,, where g, = U, - ib,, 
with a,, real and b. equal to n times the density of states per unit length of channel n. 
Furthermore, if U. is the group velocity for a wavepacket travelling along channel n,  then 
hv, = 2b./lg,IZ. For example, for a normal lead terminating at x = X L  and described by a 
tight-binding Hamiltonian of the form 

&&t 
neighbours 
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one obtains 
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g n k  x ' )  = [I/(ihu,)l(exp[ik;~x - x'll - exp[-ik:(x + x' - ~ ( X L  + a ) ) ] ]  

where k: is the longitudinal wavevector of channel n. From this expression it is clear that 
if x and x' are positions located between x L  and some point x,, then 

(2.12) 

If x, is some asymptotic position far from the closed end of the lead containing channel 
n and far from the scattering region (i.e. contact) defined by HI, then the transmission 
coefficient from channel n' to channel n (n # n') is 118, 321 

(2.13) 2 Tnn, = hf iu ; l (n ,  x,lG~~ln', x.,)l 

and since 

(2.15) 

From the expression for GEE given in equation (2.6), this yields 

where 

Combining thii with equation (2.11) yields 

(2.18) 
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In general, since the (on-shell) energy E lies in a region where the contribution to 
the density of states from gG is zero, Imgzfi = 0 and gel  = g&,. For this reason it is 
convenient to introduce the notation 

(2.19) 

(2.21) 

TL" = 0;" +U;" (2.22) 

and 

(2.24) 

Clearly the matrices U',  u(n) and r ( n )  are Hermitian. With this notation 

(Gib),,, = ( E  - (y)&y - Erv + ir,, (2.25) 

or, alternatively, 

( ~ i b ) ~ ~  = ( G ' B ~ ) ~ ~  - U,, + i rwv (2.26) 

where GbB is the Green's function arising before open channels of external leads are 
connected to the dot, given by 

(G'i;Ifiv = ( E  - t v ) &  -U;.. (2.27) 

Furthermore equation (2.14) becomes 

Tnd = 4 r;';(n)(GBB),,(GBB)kvrrvv'(n') (2.28) 

which completes the derivation of equation (2.3a). The derivation of equation (2.3b) is a 
straightforward extension of the above analysis, starting from the fundamental relation 

PYV'Y '  

T.. = (fiu,)21(n,x,IGnAln.x,) - 11'. 
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3. Expressions for scattering coefficients in the presence of Andreev scattering 

In this section we collect together some general formulae for use in later sections. Equation 
( 2 . 3 ~ )  or equivalently (2.28) immediately yields expressions for the coefficients P,yp(E,  H) 
introduced in appendix A. Indeed for n # n‘, following the notation of appendix A and 
writing n = ( i ,  a ,  a), n’ = ( j ,  b, p) ,  yields 

N R Ciaughton et a1 

where 

rPd,,(i,a) = xr ,8, ( i ,a ,a) .  (3.2) 

For structures where transport is dominated by quasi-particle resonances, only those 
levels with E” e E are important, and therefore a good approximation is obtained by 
restricting the sums on the right-hand side of equations (2.15) and (3.1) to a small number 
of states. The standard Breit-Wigner formula is obtained by keeping only a single term, 
which yields 

0 

and 

(3.3) 

(3.4) 

In situations where the structure B contains degeneracies, it may be necessary to retain two 
terms, which we label with indices U = + and U = -. In this case 

where the 2 x 2 matrix GBB is given by 

This yields 

(3.7) 

where 

with 

d = ( E  - E +  - E++ + i r++)(E - E -  - E-- + r--) - (E+- - ir+-)(E-+ - ir-+), 

(3.9) 
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For situations in which the coupling mabix W between the dot and leads is diagonal in 
quasi-particle indices, we write 

w=(w+ 0 w- 0 )  

and 

If”) = (Ig;) 

(3.10) 

(3.11) 

where W -  = -(W+)*. Furthermore for certain structures, such as those considered in . .  
sections 5 and 6, If:) are related by 

If,”) = a 4 e u ) .  

In thii case one obtains 

and 

with 

and 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

These formulae are valid in the presence of an arbitrary number of leads and illustrate the 
dependence of transport properties on the coherence factors U;. 
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4. The Breit-Wigner formula for a N-SDOT-N structure 

In this section we consider a superconducting dot with a uniform order parameter, connected 
to two normal leads. The eigenstates of a superconducting dot satisfy 

N R Claughton et a1 

HSlf”) = 6 l f v )  (4.1) 

where HB is the Bogoliubov-de Gennes operator for the isolated dot. If I@) is an eigenstate 
of the normal dot satisfying Ho~@) = &), then for a dot with a uniform real order 
parameter Ao, the solutions of equation (4.1) are of the form 

(4.2) = + A i  

where 

(4.3) 

(4.4) 

Hence the notation of equations (3.12) to (3.21) can be used, and within a single-level 
approximation, provided either i # j or 01 # @, equations (3.4) and (3.13t(3.15) yield 

(4.5) 

where Ea = U= +U:. The remaining four coefficients are obtained via equation (AI), which 
yields 

PA+(E, H) = N : ( E )  - PG+(E, H) - P$+(E, H) - P2;+(E, H) (4.6) 

P,;-(E, H )  = N;(E)  - P$-(E, H) - P;,-(E, H) - PA-(& H). (4.9) 

These coefficients can be used to calculate the mabix elements aij of equation (A6) 
and hence the various response coefficients discussed in appendix A. As an example, 
we now consider the change in conductance of the dot, due to the switching on of 
superconductivity. This problem is motivated by recent studies [27-301, which show 
that when superconductivity is induced in a normal conductor, there are three scenarios 
for the resulting change in conductance. If the normal-state conductance is high enough, 
a theorem by Lambert and Hui [27, 281 states that the conductance must decrease and 
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for weakly disordered samples may either decrease or increase depending on the precise 
impurity configuration. On the other hand for diffusive normal conductors, the conductance 
typically increases. The third scenario arises in strongly disordered conductors, where it is 
again found that the conductance may either increase or decrease, depending on the precise 
realization of the impurity potential. It has been suggested [27] that this behaviour arises 
through the presence of normal-state, resonant transport and therefore should be contained 
in equation (4.5). 

To investigate this possibility, we consider, for simplicity, the zero-energy limit, 
where the particlehole symmetry relation P;'(O, H) = PG'-8(0, H) can be used to 
simplify the above expressions. In this limit we ulite ri = r(i ,a) = r(i, -a) and 
C = C- = -C+ z 0. Then adopting the notation of equation (A12). one obtains 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Substituting these coefficients into equation (A12) yields for the zero-voltage conductance 

(4.14) 

If SE is the level spacing of the normal-state dot, then equation (4.14) reveals that if 
> 6s >> (rl + r2) then the contribution to the conductance from a single level is of 

order 

(4.15) 

Similarly, the contribution from all levels is obtained by integrating over E" to yield 
G F;: 2rlr2/(8~1AoI). Hence for a large enough value of Ao/r i ,  all resonances will be 
suppressed. This result is not unexpected, since in this limit, all transmission coefficients 
are small and the resistance reduces to the sum of two BTK boundary resistances. If the 
normal-slate system is on-resonance, then switching on superconductivity will decrease G. 
This behaviour is typical of a N-S tunnel junction and can be quantified by introducing the 
A susceptibility [27, 281 X A  = liml~l-.o(aG/alAIZ), obtained by differentiating equation 
(4.15): 
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This result demonstrates that although X A  is typically negative, anomalous positive values 
can arise when E > EO Since E :  will be randomly spread between  SE/^ and Ss/2 this 
suggests that the probability. P+ne, of finding a positive x A  is approximately E/&. For a 
tight-binding model, in which the coupling matrix W+ of equation (3.10) is characterized by 
a coupling constant U, one finds E - N(0)u2,  where N ( 0 )  is of order the density of states 
per site in the normal leads and therefore we expect P+,, to be proportional to ( N ( 0 ) u 2 / & ) .  
Thus the sign of X A  is indeed determined by the presence of normal-state resonances. 

N R Claughton et al 

U: . 

5. The Emit-Wigner formula for a structure composed of a normal lead, normal dot 
and a superconducting lead 

In this section, we consider a normal dot in contact with several normal leads and one or 
more superconductors. At zero energy, if the isolated normal dot is on-resonance, then 
particle-hole symmetry ensures that a degeneracy occurs. Hence in this example the two- 
level formula (3.8) for GBB must be employed. 

There are two equivalent strategies for tackling this problem. On the one hand one could 
identify the normal dot with sub-space B of section 2 and associate the superconducting 
and normal leads with sub-space A. In this case, for energies less than the energy gap. 
the superconducting contact contributes only to the self-energy U'. On the other hand, one 
could identify the normal dot plus superconductor(s) with the sub-space B and the single 
normal lead with sub-space A. 

In what follows we adopt the former approach and for simplicity consider energies at 
which there are no open channels in the superconductor(s). It can be shown that at the 
end of a superconducting lead with a uniform order parameter A,, = lALle'@L, the causal 
Green's function can be written as 

M 

g r ' ( x L , y . x L ,  Y'. E )  = C x . ( y ) x . ( y ' ) g r ' ( x L , x r , n .  E )  
"=I 

where gp ' (xL ,  X L ,  n ,  E )  has the structure 

1. B,eimL ) ( Bn;"#L C,, 
g t + ( x L , x L . n ,  E )  g t - ( . u x L , n , E )  ( g;+ (xL .xL .n ,E )  g,-(xL,xL,n* E )  

For energies below the gap, A,, B,, C. are real, while for energies above the gap they are 
complex. Hence for energies below the gap, equation (3.8) takes the form 

where 

In the presence of a single normal lead, we focus on the Andreev reflection coefficient 
P;'(E, H), and since the coherence factors of equation (3.12) take the form U; =Sa,, the 
electrical conductance (2.9) reduces to 

(5.3) 
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First consider the zero-energy limit, where particle-hole symmetry implies that the two 
levels closest to E = 0 satisfy E -  = - E +  and therefore a vanishing particle level t+ is 
accompanied by a degeneracy. In this limit, C--  = -E++ and r- = r+. Hence 

(5.4) 

which was obtained in [IO] for resonant transport at zero energy. It is interesting to compare 
the probability of finding a resonance in such a N-NDOT-S structure with the corresponding 
probability (equation (1 . I ) )  of the N-NDOT-N structure arising when the superconducting 
order parameter is allowed to vanish. If Iu;-l2 = r:. then a resonance will occur when 
E + +  C++ = 0. Since this involves only a single condition on the E + ,  one expects resonances 
to occur with approximately the same probability in the two structures. 

However, at finite energies, equation (5.2) reveals that this result is drastically modified, 
becausearesonancecannowoccuronlyifboth(E-€+-E++ =0)  and ( E - c - - C - -  = 0). 
The probability of simultaneously satisfying both of these conditions is small and therefore 
we predict that the breaking of the particlehole symmeny at E # 0 destroys finite-voltage 
conductance resonances. 

To quantify this behaviour, we now examine the denominator D = Idlz of equation 
(5.3), which can be written as 

D = I ( E  - A+)(E - A-) + i[r+(E - E -  - c--) + r-(E - E +  - C + + ) I ~ ~  
= ( ( E  - A+)(E - A - ) ) ~  + (r+ + r-lZ(E - e)2 (5.5) 

where 

A& = 
(€+ + E++) + ( E -  + E--) 

2 

= E & R  (5.6) 

(E+ + E++) + ( E -  + CA ( ( E +  + E++) - ( E -  + E--)) (r+ - r-) 
z (r- + r,) = E + + .  + 2 

e =  
(5.7) 

In the limit where the strength of the contact to the normal lead vanishes (i.e. when r, = 0), 
A+ reduces to the eigenenergies of the isolated N D O T S  composite. This demonstrates that 
when contact is made between the NDOT and the superconductor there is a splitting of the 
energy levels of the normal dot due to the proximity of the superconducting lead, but no 
broadening of the levels. 

Writing q = E - E and p = (r+ + r-)2 yields 

D = (qz - R2)' + p(q - 6)'. (5.8) 

If the energy E is varied, then the resonance condition becomes 

aD - = 4q3 + (2p - 4RZ)q  - 2p8 = 0 
an (5.9) 
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which has one solution if (2p - 4Rz)  2 0, but the possibility of three solutions if 
(2p - 4R2) c 0. To obtain three solutions, there must be two tuming points, which 
occur at q = +'(R2 - p / 2 ) / 3 .  Hence we predict that a double resonance can occur when 

N R Claughlon et a1 

2(R2 - p/2)f 
and 2 p  - 4RZ < 0.  (5.10) 

To illustrate the sbxcture of these resonances, figure 2 shows plots of P i C ( E ,  H), 
obtained from equation (5.3), for various values of coupling to the normal lead, figure 2(a) 
has the strongest coupling and 2(d) the weakest. All quantities are plotted as functions of 
quasi-particle energy E ,  which is a measure of the parameter q. Hence as well as a drastic 
reduction in the probability of finding finite-energy resonances, we predict that in the weak- 
coupling limit, when a resonance does occur, the usual Lorentzian line-shape is replaced by 
a double-peaked structure, with different peak heights determined by the difference between 
r+ and r- at finite energies. 

E E 
Figure 2, (a) to (d) show plots of equation (5.3) apainst 
energy E ,  for decreasing values of the coupling to the n o d  
lead. 

6. Analysis of resonant SEQUINS 

When a composite N-SS' or N-NDOT-SS' sbxcture is formed from two or more 
superconductors, with different order parameter phases, or from a single superconductor 
with an imposed phase gradient [46], transport properties can be significantly modified if the 
phase difference between two points is varied by 2n [15-22]. In experimental realizations 
of such SEQUINS 123-261, the phase difference between two superconducting contacts is 
modulated by connecting the superconductors to a macroscopic, extemal superconducting 
loop, whose phase is controlled by an applied magnetic field. Sub-gap quasi-particles 
can penetrate only a distance of order the superconducting coherence length into the 
superconductor and therefore apart from controlling the phase, the macroscopic loop plays 
no role in determining the s-matrix of the region near the contacts. Since the electrical 
conductance is a periodic function of the phase difference q ,  with period 2n. and since q 
changes by 2x when the flux @ through the macroscopic control-loop changes by a flux 
quantum @o, a SEQUIN is a galvanometric detector of flux, with a sensitivity comparable 
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with that of a SQUID In this section we highlight generic properties of resonant SEQUINS 
and predict that flux sensitivity is significantly enhanced by the presence of resonances. 

The starting point for this analysis is a sub-space B containing one or more 
superconductors, with eigenstaks I f v )  and eigenvalues e,, which are periodic functions 
of some dimensionless parameter q. with period 237. Before attaching the normal lead, the 
Green's function of such a structure is given by equation (2.15) and for a sub-gap energy 
E, when contact is made with the normal lead, equations (3.4) and (A9) yield for the BTK 
conductance 

For a coupling matrix of the form (3.10) and eigenstates of the form (3.11), one obtains 

(6.3) 

where 

and 

Consider now the situation in which, at q = the resonance condition E - %(qo) = 0 
is satisfied, where E,(?) = 6&) + C,(q). Then expanding equation (6.1) about qo yields 

This demonstrates that with varying 11, G exhibits a Lorentzian resonance of width 

For the case ?) = 2n4/4o ,  noting that ev(q) can vary by at most an amount of order 
A. as q varies by 2n yields an upper bound for [a%,(qo)/aqo] of order Ao/2n. Hence in 
terms of the flux through the external control loop, the resonance width is greater than or 
of the order of 

8 4  = ~ @ o ~ v ( v o O ) / A O .  (6.7) 

For simplicity in the above analysis, we have considered only a single resonance and a 
normal lead with no closed channels; the latter merely shifts the position of the resonance, 
while the former may lead to the appearance of several resonances per flux quantum. If the 
temperature T is greater than r.(qo)/ks, then the resonance width will be of order 

r , ( ~ o ) / [ a e , ( ~ o ) / a ~ o i .  

8 4  = 2~4oksT/Ao.  (6.8) 

For a SEQUIN operating at 1 K, formed from a cuprate superconductor with a transition 
temperature of 100 K, this yields 6 4  2: @0/20. 
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7. Numerical results in two dimensions 

In this section, we present the results of detailed numerical simulations of two-dimensional 
tight-binding systems, described by a tight-binding Bogoliubov-de Gennes operator of the 
form 

where Ho is a nearest-neighbour Anderson Hamiltonian on a square lattice with off-diagonal 
hopping elements of value -1, and A is a diagonal matrix. The scattering region is chosen 
to be M sites wide and is connected to external leads of width M. Within a disordered 
scattering region, diagonal elements {Q] of Ho are chosen to be random numbers, uniformly 
distributed between EO - W and €0 + W .  Within a superconducting region, those of A are 
set equal to Ao. Within the normal leads, the diagonal elements of HO are equal to a 
constant €0, while those of A are set to zero. In what follows, for a given realization of 
the Hamiltonian H, the scattering matrix is obtained numerically using a transfer matrix 
technique outlined in appendix 2 of [32] .  

M’ - 
. *  ....... . . . . . . . . 

Figure 3. The tight-binding two-dimensional structure used for the N-SDOT-N calculations 
of figurcs 4 to 7. The shaded regions denote large insulating regions with diagond elements 
6 = IW. The leads are coupled by a single hopping element of value --v LO one site on the 
surface of the dot. All other hopping elements are of value - 1 .  Thc dot is disordered, with 
disorder width 2 W ,  and can be either superconducting or normal. 

First we present results for the NSDOT-N stricture shown in figure 3, which we 
compare with the analytic results of section 4. The shaded region in figure 3 denotes 
a large insulating barrier, obtained by choosing a suitably large value for the diagonal 
elements of HO such that an unbroken barrier of this width would yield no quasi-particle 
transmission. The system is M‘ + ~ M B  sites long and the leads are connected to the dot 
by a one-dimensional channel of length MB. A point contact between the channel and dot 
is made via a hopping element -U. 

For E = 0, figure 4 shows plots of the A susceptibility versus the disorder W, for four 
coupling strengths U ranging from 1/100 to 1. For the smcture used in these calculations, 
c0 = 0.2, M = 11, M’ = 10, MB = 5 and the barriers are identical. Within the barriers, the 
diagonal element is set to 100. Figure 5 demonstrates that the number of positive values of 
xo increases as the strength U of the contact is increased. To quantify the rate of increase, 
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Figure 4. (a) to (d) show plots of XA against disorder W 
for LI = 0.01, 0.1, 0.2 and 1 respecOvely with M = 11 ,  
M' = IO and M g  = 5. The vertical scale has been 
c h o w  to show typical values of X A .  A small number 
of points. whose values are of order -IO6 Lo - IO8 .  MI 
outside the vertical range of &e plots. 

Figure 5. The upper panel shows a plot of the 
probability of finding a positive XA as a function of 
U. Superimposed on this is a graph of P,, = Av2 
(dashed curve) for a choice of the constant A which 
yields a best fit. The solid line of the lower p a e l  
shows a log-log plot of the numerical results of the 
upper panel, while the dashed line shows a plot of 
In(P+,,) = I N A )  + 2 In(v).  

the upper graph of  figure 5 shows the probability P+,, of  finding a positive xA, plotted 
against U. Superimposed on this curve is a plot of the prediction based on equation (4.16); 
PtUc = A(u)' (dashed line), where A is a constant. The lower graph o f  figure 5 shows a plot 
of ln(P+ue) versus ln(u), along with the straight (dashed) line In(P+,,) = In(A) + 2ln(u), 
confirming that P+,, is indeed parabolic for small U. 

As well as the susceptibility XA,  it is also of interest to examine the change in 
conductance 6G at finite A. Figure 6 shows results for the variation of SG with Ao, 
for various values of disorder ranging from W = I to W = 2. The model parameter 
values for this system were €0 = 0.2, M = 11, M' = 30, Ms = 5 and U = 0.1. Figure 
6 demonstrates that for systems in which a large variation in tho conductance occurs, the 
change 6G is typically negative. For a dot with M = 11, M' = 10 and Ms = 5, figure 7 
shows results for the change in conductance due to the switching on of an order piameter 
of magnitude A0 = 0.01, plotted against disorder strength W ,  for four values of  U ranging 
from U = 0.01 to U = 1. Again for small couplings U, large negative changes occur when 
the switching on of A0 moves the system away from a normal-state resonance. For larger 
values of  U, not described by the weakcoupling analysis of  section 5, figure 7(d) shows 
that large changes of arbitrary sign can occur. 

We now present results for the N-NDOTS structure shown in figure 8, which we 
compare with the analytic predictions of section 5. In this figure, the dot is M sites wide 
and M' sites long. The connection to the left-hand lead is ML sites wide and via hopping 
elements UL. The right-hand side of the dot is connected via hopping elements uR to 
MR sites of a superconducting region. Results for the N-NDOT-N system are obtained 
by setting A0 = 0 in the superconducting region and evaluating the conductance using 
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Figure 6. The change in conductance 6C = G(Ao) - 
C(0) against AQ for 500 realizations of disorder with 
W varied fmm I to 2, 
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Figure 7. (a) to (d) show the change SG obtained by 
switching on an order parameter of magnitude A0 = 
0.01. ploited against W for U = 0.01, 0.1. 0.2 and I 
respectively. 
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.................. ....................... 
-* 

d d% 
Figure S. The tight-binding two-dimensional srmcture used for lhe N-NDOT-S calculations of 
figures 9 to 11. The region of length MS denotes a superconducting region of length Mi sites 
with on-site order parameter AQ, where AQ and Mi were chosen to give zero quasi-panicle 
tmsmission. The superconductor is coupled Lo MR sites on the surface of the dot, by hopping 
elements V R .  ?he left-hand lead is anached lo ML sites on the dot by hopping elements VL. 
The dot is disordered, wilh disorder width 2W. 

the formula G = To(E). For the N-NDOTS system, A0 is set to a finite value and 
the BTK conductance G = 2R,(E) of equation (A9) is evaluated. To ensure negligible 
transmission through the superconductor, the length Mi of the superconductor is chosen 
such that Mi >> E ,  where 6 = l/Ao is the superconducting coherence length. Figures 
9 and 10 illustrate the destruction of finite-energy resonances due to the switching on of 
superconductivity in the right-hand lead. For A0 = 0, the upper curves in each figure show 
results for the normal-state transmission coefficient To(E) as a function of the mean diagonal 
element €0 of NO. For A0 f 0, the lower curves in each figure show the corresponding 
Andreev reflection coefficient R,(E).  Figure 9 shows results for E = 0 and figure 10 for 
E = 0.1. In each figure, €0 varies over the complete tight-binding energy band, from -4 
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to +4. These results were obtained with model parameters M = 11, M' = 20, ML = 10 
and M r  = MR = 1, with UL = V R  = 0.2 and W = 1.5. These results are typical of those 
obtained for a variety of model parameters, provided the level broadening is smaller than 
the level spacing of the dot. For the system in which A0 is finite, a value of A0 = 2 was 
used. This value was chosen so that the relatively small dot used in the simulations would 
possess many quasi-particle levels below the energy gap of the superconductor. 

1 

TO 

0 
1 

Ra 

0 
-4 

1 

TO 

0 
11 
i 

0 4 -4 0 4 

Figure 9. For a quasi-particle energy E = 0, the 
top graph shows the "ission coefficient To when 
A0 = 0. as a function of the mean diagonal element 
€0 for the dot. The lower graph shows corresponding 
results for Andreev reflection coefficient R.. when the 
order parameter in the right-hand lead assumes a non- 
zero value A0 = 2. 

Figure 10. As figure 9. except that the energy now 
takes the non-zero value E = 0.1. 

As predicted by the analysis of section 6, figure 9 demonstrates that at zero energy, the 
probability of finding a resonance in the N-NDOTS structure is slightly smaUer than, but 
of the same order of magnitude as the corresponding probability in the N-NDOT-S system. 
In contrast at finite energies, figure 10 demonstrates that whereas normal-state transmission 
resonances survive, resonances in the N-NDOT-S system are almost completely suppressed. 
Furthermore when a finite-energy resonance in R,(E) does occur, the shape of the resonance 
is no longer Lorentzian. Figures 1 l(a) to ll(f) show numerical results for a typical resonance 
belonging a disordered dot with W = 0.5, for different strengths of coupling to the normal 
lead; figure Il(a) has the strongest coupling with UL = 0.7 and 1 I(f) the weakest coupling 
with uL = 0.1. In each case the coupling to the superconductor was fixed at vR = 0.6. 
These results mirror the analytic results of figure 2 and confirm that finite-energy resonances 
in R,, exhibit the expected double-peaked structure. 

As a final example, we now show results for the resonant N-SS' shucture sketched 
in figure 12, which comprises a thin superconductor S, separated from a second longer 
superconductor S' by a normal 2DEG N'. For convenience the superconductor S' is chosen 
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Figure 12. The tight-binding hvo-dimnsional struchm used for the NSS' calculations of 
figum 13 and 14. The shaded regions denote a superconducting region S of Icngth AIS 
sites and anolher region S' of length Mk sites each of which has on-site order panmeter 
magnitude A0 = 1. MI is chosen to give zero quasi-particle vansmission thmugh he righc-hand 
supereonductor. The leR-hand lead is anached U, S by hopping elemenls UL = 0.3. All other 
hopping elements are of magnitude unity. 

to be much longer than the superconducting coherence length, so that there is no sub-gap 
quasi-particle transmission and therefore the sub-gap differential conductance, measured 
between the right-hand, external, normal lead and S' is simply the BTK conductance 2Ra(E) .  
In the limit where the lengths Ms, Mi tend to infinity, this structure possesses bound quasi- 
particle states below the gap [47]. which for finite MS become transport resonances. In the 
absence of disorder, there is translational invariance in the transverse direction and therefore 
transport properties decouple into a superposition of separate resonances, associated with 
individual open channels. 

For a fixed phase of q5 = 0, figure 13(a) shows a plot of R,(E)  as a function of E/Aa 
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Figure 13. For lhe stmchre in figure 12 this figure shows lhe Andreev reflection coefficient as 
a function of energy E for a clean System (a) and a System with disorder W' = 0.5 (b). 

for a clean system with W = 0, M = 11, Ms = 2, M' = 10 Mi = 20 and A0 = 1. To 
obtain conductance resonances of finite amplitude. it is necessary that an approximate sum 
rule is broken [46] and, therefore, to introduce some normal scattering, a value of uL = 0.3 
was chosen for the coupling between the left-hand lead and S. Figure 13(b) shows the 
corresponding plot for a weakly disordered system with disorder W = 0.5, corresponding 
to an elastic mean free path of 1, = 10.5. The analysis of section 6 predicts that the spectra of 
figure 13 are oscillatory functions of 4 and, therefore, for a fixed energy E, phase-periodic 
resonances appear in the differential conductance. For a clean system, figures 14(a)-(c) 
show the variation of & ( E )  with the phase difference 6, at energies of E = 0, A0120 and 
AO/10. Figures 14(dHfj show corresponding results in the presence of disorder W = 0.5. 

It should be noted that a nGve picture based on results for a clean structure can be 
misleading. For example, calculations of bound states between two superconductors of 
infinite extent [47] predict that at 6 = K a state should pass through zero energy. However, 
in the presence of normal scattering, which breaks translational symmeby in the longitudinal 
direction, this feature is no longer present and, in contrast with the case of N-NDOT-S 
structures of section 6, where the S is only weakly coupled to the NDOT, here zero-voltage 
conductance resonances are absent. 

8. Conclusions 

We have presented a theoretical framework and general formulae for resonant transport 
through three classes of hybrid normal-superconducting nanostructm. Results obtained 
for N-SDOT-N structures demonstrate that if the normal structure is on-resonance at zero 
energy, then switching on A0 wiU typically decrease the conductance of the system. On 
the other hand, anomalous positive changes in the conductance can occur with a probability 
proportional to E/& - N(0)uz/Sc, where U is the coupling to the dot, 66 the level spacing 
and N ( 0 )  is the density of statm per site in the normal leads. For applied voltages greater 
than Ao, the change in conductance depends on the choice of energy and the precise 
realization of the impurity potential. 

For N-NDOT-S structures, the zero-voltage results of [ 101 are reproduced. More 
generally we predict that finite-voltage resonances are almost completely suppressed by 
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Figure 14. For a clean system (aHc) show the variation of R.(E) with lhe phase difference 
@, at encrgics of E = 0, A0/20 and A0/10, (dHQ show corresponding results in lhe presence 
of disorder W = 0.5. 

the switching on of superconductivity and those that survive can have a doublepeaked 
line-shape. This situation can  arise^ at voltages much smaller than the superconducting 
energy gap, because for a chaotic dot. differential transport at a voltage of the order of 
the level spacing is sufficient to break particle-hole symmetry. In the analysis of [Ill,  
a model containing only a single resonant level was analysed and therefore this feature 
is absent. Such non-Lorentzian resonances have been discussed in other contexts [4&] and 
may generate non-exponential delay-time C U N ~ S .  This destruction of resonances implies that 
the typical conductance is large at zero voltage and decreases with increasing bias. This is 
reminiscent of zero-bias anomalies observed in the sub-gap conductance of superconducting- 
semiconducting junctions [49, 501, although the theory of such structures [51-54] is rather 
different from that of section 5. 

In section 6 we predicted that a resonant SEQUIN can possess Lorentzian resonances 
on a scale much smaller than a flux quantum, which suggests that these may provide a new 
class of magnetometers with a sensitivity at least matching that of present-day SQUIDS. 
Finally, in section 7, we presented numerical results confirming the above predictions. 
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Appendix A. Current-voltage relations at finite voltages 

In the presence of Andreev scattering, current-voltage relations for a phase-coherent 
scatterer connected only to normal reservoirs were written down in [31]. Although 
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these have been extended and re-derived in several papers (32. 33, 381, there exists no 
comprehensive discussion of multi-channel, finite-voltage differential conductances. Since 
such measurements play a central role in studies of resonant structures, we begin with a 
brief discussion of finite-voltage transport. We also take this opportunity to demonstrate 
that the finite-temperature analysis of [31, 321 can be applied when superconducting leads 
with open channels are present. 

In the absence of inelastic scattering, dc transport is determined by the quantum 
mechanical scattering matrix s ( E ,  H), which yields scattering properties at energy E of 
a phase-coherent structure described by a Hamiltonian H. If the structure is connected to 
external reservoirs by open scattering channels labelled by quantum numbers n,  then this 
has matrix elements of the form sn,",(E, H). The squared modulus of &..,(E, H) is the 
outgoing flux of quasi-particles along channel n,  arising from a unit incident flux along 
channel n'. In what follows, we consider channels belonging to current-carrying leads, with 
quasi-particles labelled by a discrete quantum number 01 (a = +1 for particles, -1 for 
holes) and therefore write n = (1, a), where I labels all other quantum numbers associated 
with the leads. With this notation, the scattering matrix elements sn,n,(E, H) = @ ( E ,  H )  
satisfy s t (E ,  H) = s - ' ( E ,  H), s ' (E ,  H )  = s ( E ,  H*) and if E is measured relative to the 
condensate chemical potential p = eu, s$(E, H) = ap[sG?-'(-E, H)]*. For a scatterer 
connected to external reservoirs by L crystalline, normal leads, labelled i = 1,2, . . . , L,  it is 
convenient to write 1 = (i. a) ,  I' = ( j ,  b ) ,  where a (b)  is  a channel belonging to lead i ( j ) .  
In addition to those channels belonging to normal leads, there may exist open channels 
belonging to superconducting leads. To avoid time-dependent order parameter phases 
varying at the Josephson frequency, which would render a time-independent scattering 
approach invalid, we insist that all superconductors share a common condensate chemical 
potential p. For this reason, it is convenient to attach a common label 1 = (0, a )  to any 
open channels belonging to the superconductors. In what follows, we focus attention on 
the quantity 

which is the probability of reflection (i = j )  or transmission (i # j )  of a quasi-particle of 
type ,8 in lead j to a quasi-particle of type a in lead i. Fora # p ,  P,:j'(E, H) is referred to 
as an Andreev scattering probability, while for 01 = p, it is a normal scattering probability. 
Since unitarity yields 

where i and j sum only over leads containing open channels of energy E ,  this satisfies 

L L 

P ' y ( E ,  H) = N?(E)  PP'(E, H) = N,"(E) (AI) 

where N y ( E )  is the number of open channels for a-type quasi-particles of energy E in lead 
i satisfying N:(E) = N r ( - E ) .  For convenience, if a lead i contains no open channels of 
energy E ,  we have defined P;'(E, H) = P$"(E, H) = 0 and in equation (AI) summed 
over all i and j .  

In the absence of open channels in the superconductor, current-voltage relations at finite 
voltages and temperatures were derived in [31, 321. For a system connected by normal leads 

B i d  ui=O 
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to external reservoirs at potentials ui. i = 1,2, , . . , L, the current I, flowing in a normal 
lead i is 

N R Chughion et a1 

L 

2, = CAij ( i  = 1,2,. . . , L) 
j = O  

where 

and f P ( E )  = (exp[(E - olleuj - / ~ ) ) / k b T ]  + I)-'  is the diswibution of incoming or-type 
quasi-particles from lead j .  

Once the cuments in the normal leads are known, the current IO flowing into the 
superconductor(s) is given by 20 + Cf=, 1; = 0, which allows us to avoid explicitly 
computing currents in the superconducting regions. For i # 0, the term A;o, which describes 
the scattering of quasi-particles originating from the superconductor, takes the form 

where f o (E)  = lexp[E/kbTl+ I]-'. In view of equation (AI), this can be written as 

Hence equation (A2)  becomes 

L 
I; = Aij 

j=1 
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Arj = ( Z e / h ) L  
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(ewi-!4 
dE IN:(E) + P,;'(E, H) - P;'(E, H)] (A5b) 

Equations (A4) and (A5) express the coefficients Aij in terms of scattering matrix 
elements between normal leads only. Identical equations are derived in the work of [31, 
321, which differs from the present analysis by omitting the terms i = 0, j = 0 in equations 
(Al). For a system connected to normal leads only, these terms are absent. They can also 
be omitted in the presence of superconducting leads, provided both leuj - < A0 and 
kBT < Ao, because for energies less than the superconducting energy gap Ao, there are no 
open channels in the superconductors. 

Equation (A3) yields the current-voltage characteristics of a given structure at finite 
voltages, provided all scattering coefficients are computed in the presence of a self- 
consistently determined order parameter. Such calculations have been carried out recently 
for onedimensional structures [39, 401 and demonstrate that, provided the currents are low 
enough, the matrix ajj can remain unchanged, even on the application of finite voltages of 
order Ao. In this limit, the differential of equation (A3) takes the form 

L 
S l j  = C U i j ( 6 U j  - 6 u )  

j=l 

which yields the change in current SI; due to a change SE;, where E; = eu; - p. At finite 
temperature, 

and 

(A7b) 

At zero temperature, after taking advantage of particle-hole symmetry, these reduce to (in 
units of 2eZ/ h )  

aj,j+j = P;+(Ej, H) - P r ( E j ,  H) (A7d 

and 

aij = Ni+(Ei)  + Pi;+(& H) - P2+(Ei,  H). ( A 7 4  

In the limit { E , ]  + 0, combining these expressions with the s-matrix symmetries stated at 
the beginning of this section, yields the reciprocity relation a i j ( H )  = u j i ( H * )  [41]. 

Starting f" the above results, expressions for a variety of transport coefficients can be 
derived. For example in the presence of one normal lead, where the matrix A reduces to a 
single number, one finds h = A l l ,  and from equation (A6), for the differential conductance 
G(EI) = dlj/d(ul - U) =all .  This equation, which at zero temperature reduces to 

G(E1) =all = N:(El) + P;+(EI ,  H) - PA+(EI, H) (As) 



8782 

was first derived by Blonder, Tinkham and Klapwijk (BTK) [I41 in the presence of a 
single, well-defined boundary between the normal scatterer and superconductor. More 
generally, the above discussion shows that equation (AS) is valid even if there exist 
many distinct superconducting regions, provided all superconductors possess a common 
condensate potential. Thus equation (A8) is more than a simple boundary conductance 
formula and applies to any phase-coherent system connected to a single normal reservoir. 

If the superconductor contains no open channels at energy E l ,  then equation (AI) yields 
N,+(Ej) = P , F ( E I ,  H) + P;+(E,, H) and therefore 

N R Claughton et a[ 

G ( E j )  c 2Pc+(El, H). (A% 

In the presence of two normal leads, equation (A6) yields 

where d = a l lau  - alzazl. If the superconductor carries no current, then in contrast with 
a BTK conductance measurement, in which the condensate potential p is fixed by the 
superconducting contact, must now be determined via the condition 

Hence the two-probe conductance G = 61/(Sul - 6s) takes the form 

~~ 

d 
G =  

alt +a~z+ali+aai 

The right-hand side of this expression can be evaluated once the energies E ,  and E z  are 
known. In the zero-voltage limit El = Ez = 0, where all quantities are evaluated at zero 
energy, equation (All)  can be written [18, 31, 321 as 

where RO = PA+(O, H), TO = P Z ( 0 .  H) (R. = P;;+(O. H), To = P;;+(O. H)) are 
probabilities for normal (Andreev) reflection and transmission for quasi-particles from 
reservoir I ,  while RA, Ti (RL, Ti) are corresponding probabilities for quasi-particles from 
reservoir 2. In the presence of N = N t ( 0 )  = N:(O) open channels per lead, equations 
(AI) yield Ro + TO + R. + To = RA + Td + R: +Ti = N and To + To = Ti + Ti. 

If the superconductor is able to carry a steady-state current (i.e. if part of the 
superconductor forms an external lead), then an alternative transport measurement is 
obtained by setting the current in one of the normal leads to zero. If this lead is 
labelled j and the other normal lead labelled i then, since SI, = 0, equation (AIO) yields 
6Zi = Gi(Sui -6~). where 

G; =d/a,j. ( ~ 1 4 )  

Furthermore, 6uj - 6u = G',(Sui -$U), where 
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Since aij can have arbitrary sign, the sign of Sui - Su relative to Sui - 6 u  is not fixed. 

determined by the requirement 11 = Iz,  which yields 
At finite voltages, the energies E; to be used in evaluating the coefficients of (A1 1) are 

Ai1 + A22 + A n  +Am = 0. 

Similarly the energies to be used in (A14) and (A15) are determined by the requirement 
Ij = 0, which yields 

Aji + Ajz = 0. ~ 4 1 7 )  

These self-consistency conditions involve integrals over all incident quasi-particle energies 
and require a knowledge of the s-matrix over a range of E. For certain simple structures, p 
may be determined by symmetry arguments. Otherwise the task of solving these equations 
is non-trivial. 

In practice, if the potential differences SEi / e  can be measured experimentally, the 
problem of solving these integral equations can be avoided. This will be the case in 
experiments where the normal reservoir potentials are measured relative to the condensate 
potential and therefore at least one superconducting lead is present. In such an experiment, 
the individual coefficients ai j  = e J I i  /6Ej are measurable and the finite-energy analysis is 
considerably simplified. 
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